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The nearly universal link between the age of past
knowledge and tomorrow’s breakthroughs in science
and technology: The hotspot
Satyam Mukherjee,1,2 Daniel M. Romero,1,2,3 Ben Jones,1,4 Brian Uzzi1,2*

Scientists and inventors can drawon an ever-expanding literature for the building blocks of tomorrow’s ideas, yet little
is known about how combinations of past work are related to future discoveries. Our analysis parameterizes the age
distribution of a work’s references and revealed three links between the age of prior knowledge and hit papers and
patents. First, works that cite literature with a low mean age and high age variance are in a citation “hotspot”; these
works double their likelihood of being in the top 5% or better of citations. Second, the hotspot is nearly universal in all
branches of science and technology and is increasingly predictive of awork’s future citation impact. Third, a scientist or
inventor is significantly more likely to write a paper in the hotspot when they are coauthoring than whey they are
working alone. Our findings are based on all 28,426,345 scientific papers in the Web of Science, 1945–2013, and all
5,382,833 U.S. patents, 1950–2010, and reveal new antecedents of high-impact science and the link between prior
literature and tomorrow’s breakthrough ideas.
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INTRODUCTION
Scientists and inventors can combine information from an ever-
expanding knowledge base dispersed across documents, experiments,
and data (1). TheWeb of Science (WOS) contains 28.4 million publica-
tions, including more than 1.5 million new articles published in 2014
alone, sextupling the 1970 rate. The U.S. Patent and Trademark Office
(USPTO) issued 287,831 patents in 2013, quadrupling the 1970 rate.
Although more knowledge enables more novel ideas to be combined
(2, 3), scientists and inventors have limited time to search through
the expanding base (4, 5). As the rate of knowledge expansion grows,
but the time to search for new knowledge remains fixed, scientists and
inventors search a smaller fraction of the available knowledge (6–8).
These trade-offs between available knowledge and search costs make
understanding where to search for the most valuable past information
important to new knowledge advances (2, 4, 7). However, little research
exists on where in the store of knowledge to find the best combinations
of past information (2).

Consider the following case. Imagine you are in the library of Alex-
andria in 48 BCE. At the time, the library of Alexandria is the largest
store of scientific knowledge on the planet and growing rapidly. Every
document related to science, philosophy, or religion written in Egypt is
copied and put into the library, as is every document found on every car-
avan or boat that lands on Egyptian shores. In 48 BCE, the library catches
fire.Younowhave limited time to search for knowledge you think is going
to be most valuable for creating the next set of important ideas in your
field. How do you search the store of knowledge? Do you gather up the
most recent documents under the assumption that they offer a summary
statistic of the best of past knowledge? Do you collect the oldest papers
that have stood the test of time?Do you look for the papers that were read
by the most experts in your field? Do you sample papers at random?

Theories of knowledge development emphasize the importance of
past information in the formulation of new ideas (2, 9–12) but offer dif-
ferent answers to the questions aboutwhere to search for themost fruitful
information. One school of thought argues that older work, benefiting
from the test of time, is most likely to provide the building blocks of
newwork, an idea reflected in Isaac Newton’s famous remark, “If I have
seen further than others, it is by standing upon the shoulders of giants”
(10). By contrast, Robert Merton’s births of time theory (11) suggests
that recent information drives breakthrough ideas (11, 12). Consistent
with Merton’s formulation, many information retrieval systems search
for recent information first. Cognitively, people tend to retrieve themost
recent information first (13). Search engines typically return results
according to either recency or popularity, both of which correlate with
the age of the information (14).

Diverging arguments and little empirical study on the information
search question havemeant that the link between the age of information
referenced in a work and a work’s impact remains an open question.
Knowing whether old, new, randomly sampled, or popular information
is associated with the creation of novel combinations can help provide
insight into where the richest combinations of past knowledge are lo-
cated. To address these questions, we studied modern science and in-
vention to identify the empirical patterns linking the age of information
cited in a paper or patent and the paper’s or patent’s subsequent impact.
RESULTS
We investigated two large domains of knowledge: all 28,426,345 papers
in theWOS, 1945–2013, and all 5,382,833 patents published in the U.S.
patent office database, 1950–2010. In both domains, the references cited
in a work identify the age of the past knowledge it builds upon (2, 3, 5).
To quantify the age of information referenced in a work, we computed
the age distribution of its cited references (6, 9). This distribution, de-
notedD, contains the age differences between a work’s publication year
and the publication years of its references. Two properties of D are its
mean (Dm) and coefficient of variation (COV) (Dq), whichwe computed
for each scientific paper in theWOS and for each U.S. patent. Figure S1
(A and B) shows the empirical distributions ofDm andDq for all papers
in the WOS in 1995. Figures S2 and S3 (A to C) present null models of
referencing behavior and indicate that the observed distributions of Dm

andDq are not explained by chance. Table S2 shows the measurements
of Dm and Dq for four example papers.

A common measure of the impact of a scientific paper or patent is
the number of citations it receives (2, 3, 12, 15). We defined a work as
high impact (H = 1) if a work is in the top 5th percentile of cited works
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in its scientific or technological subfield based on the citations it accumu-
lated in the first 8 years after publication (2, 15, 16), and low impact
otherwise (H = 0). As robustness checks on our measure, we also mea-
sured impact as being in the top 1, 10, and 25% of the citation distribu-
tion, the log of the number of citations a paper accumulates after 8 years
of publication and over its lifetime (12, 17), and a paper’s PageRank of
citations, that is, papers with a possibly lownumber of absolute citations
but with relatively many cites from hit papers (18). Below, we present the
results for papers in the top 5% of the citation distribution. In Materials
and Methods, we provide detail on measurements. Robustness checks
using other measures of H (impact) and D (age of knowledge) are
presented in the Supplementary Materials (tables S1 and S3 to S9). All
measures produced similar results.

The knowledge hotspot and scientific impact
Figure 1 is a heat plot of the relationship between Dm, Dq, andH. Each
point in the plot represents theDm andDq values of papers published
in 1995 (N= 546,912), and the intensity of the color represents a paper’s
probability of high impact. The plot’s vertical and horizontal lines
represent the median and mean population-level values of Dm and
Dq. Three main findings are demonstrated. First, amid all the distribu-
tions of the ages of information, one type of age distribution is especially
associated with high impact. Papers in this “hotspot” have a lowDm and
highDq and are 2.2 times more likely, on average, to receive citations at
a level of 5% or better in their field. Figure 2 further characterizes the
knowledge space of papers in the hotspot with respect to time. Papers in
the hotspot reference recent ideas in the literature (low average Dm =
6.05, SD = 1.74) and ideas of a relatively wide variation of age (high
Dq = 1.0, SD = 0.23), as revealed by the tail of this distribution, which
reaches well into the past at a progressively decreasing rate. Second,
papers that center their references on new knowledge—low Dm and low
Dq—have a surprisingly low rate of impact that rarely exceeds what is
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
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expected by chance. This suggests that the conventional bias towardheav-
ily citing recent work (6) is valuable only when mixed with a high Dq.
Third, papers that reference prior work centered on older knowledge—
that is, paperswith highDm and lowDq (27%of all papers)—are notable
in that they have an H that is half the rate expected by chance.

Figure 3 demonstrates that the relationship between the hotspot
and level of impact has been remarkably robust across time. Pooling
allWOS papers on a year-by-year basis from 1950 to 2005, we find that
the information hotspot has invariantly been strongly related to high-
impact work for all of modern science. Scientific papers in the hotspot
consistently double their chances of being a hit. Further, we observe a
growing trend of a paper being a hit when it is in the hotspot. By con-
trast, papers outside the hotspot have risen and fallen in their relation-
ship to impact but generally remain relatively low impact, with no other
mix of Dm and Dq exceeding the 5% background rate expected by
chance. This empirical regularity suggests a fundamental ordering that
may characterize the relationship between the age of information refer-
enced in a scientific paper and extraordinary scientific impact.

Figure 4 disaggregates the data in theWOS on a field-by-field basis,
revealing amarked similarity across the branches of science with regard to
themain findings. TheWOS lists 171 subfields in science and engineering,
54 subfields in social sciences, and 27 subfields in arts and humanities.
Using the classification for the four types of information search shown
in Fig. 1, we computed the fraction ofWOS fields for which papers in the
hotspot are associated with the highest citation impact. Figure 4 dem-
onstrates that, at the beginning of the postwar era of science, about 60%
of fields displayed the “hotspot-hit link” (green bar). By the 2000s, the
hotspot overrepresents hit papers in almost 90% of the fields. Thus, de-
spite the large differences between scientific fields in terms of theory,
methods, data, and culture, the hotspot dominates the sciences.

To test these patterns in the data while controlling for other variables,
we ran fixed-effects regressions topredict the citation impact of individual
papers. Fixed-effects regressions allows us to control in a nonparametric
and flexible manner for numerous features of each paper, including
the predictive capacity of each (i) field, (ii) publication year, (iii) number
of references made, and (iv) number of authors. In addition, we control
for the degree to which a work references (v) prior work frommultiple/
interdisciplinary fields, (vi) highly cited papers (19), and (vii) conventional
and/or novel pairings of prior ideas (2). (See Methods for the fixed-
effects regression model, the variable construction details, and the re-
lated approach used for patents.)

Table 1 shows that the regression models indicate three important
relationships between H, Dm, and Dq. First, the knowledge hotspot is
strongly related to citation impact net of control variables for time, all
254 scientific fields, and paper-level characteristics. The large drops in
the Bayesian information criterion (BIC) statistics when Dm and Dq are
added to the control variable regressions indicate the strong explanatory
power of Dm and Dq (Materials and Methods). Similarly, standardizing
the regression coefficients indicates thatDm andDq have large substantive
effects on citation impact relative to other predictors of citation impact
(table S10). Second, Fig. 5 reveals the intricate joint behavior of Dm and
Dq in relation to hit papers. Papers with a high mean age of references
(Dm) are always associatedwith a lowprobability of being ahit irrespective
of the variation in the age of references (Dq). Conversely, a lowmean age
of references (Dm) is associated with being a hit only when the age var-
iance of references (Dq) is high. Papers with a low Dm and low Dq have
surprisingly no greater likelihoodof being a hit than expected by chance.
Third, the above findings are robust to diverse measures of a hit. Tables
S2 to S8 show that the above results are replicated whenH is measured
Fig. 1. Knowledge hotspot predicts high-impact science. Papers in the hotspot are,
onaverage,more than twotimesas likely tobehits than thebackground rate (data shown
are for the year 1995, N = 546,912 papers). The hotspot is the overrepresented concen-
tration of “hit” papers shown in green that cite prior knowledgewith a lowmean age,Dm,
and a high age COV, Dq. Notably, 75% of papers are outside the hotspot, and their like-
lihoodofbeingahit is nogreater thanexpectedbychance. Solid linesanddotted linesare
population means and medians of Dm and Dq. The background rate is the likelihood of a
paper chosen at random being in the top 5% of citations for papers in that field.
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at the 1st, 10th, 25th, and 50th percentiles of citations, as the log of the
number of citations a paper acquires in its first 8 years after publication,
citations acquired over a paper’s lifetime, a paper’s PageRank (18), or
whether a paper receives the bulk of its citations long after its year of
publication, that is, “sleeping beauties” (17).
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
The knowledge hotspot and patenting impact
Like scientific papers, patent impact is measured by citations received,
and their references indicate the prior literature the new patent is based
on (3, 20). In patenting, the patent examiner’s official obligation is to
augment authors’ citations by citing relevant work authors miss and
minimizing irrelevant citations and strategic citations (21). Further, pat-
ent examiners assign references after seeing the submitted patent. Thus,
their retrospective citation process helps identify the knowledge space
applicable to a patent.

Patents have the same hotspot-hit relationship as scientific papers.
Figure 6 indicates that patents that are in the hotspot are significantly
overrepresented at the 5% level of impact. Like papers, patents in the
hotspot reference some recent patents (low average Dm = 6.08, SD =
1.75) and papers of a relatively wide variation of age (high Dq = 0.98,
SD = 0.22). Figure 6 shows that the same hotspot-hit paper relationship
holds on an annual basis for patents. Figure 6 indicates that the hotspot
is consistently overrepresented in relation to hit patents in 95 to 100%of
the patenting subfields over our time frame of 30 years. Tables S11 and
S12 present fixed-effects regressions confirming these results net of
controls, indicating that the hotspot-hit relationship is robust for inventors
and technology and that two critical knowledge creation domains share
surprisingly similar and nearly universal patterns relating the age dis-
tribution of the referenced literature in a work and a work’s probability
of being a hit.

Search and the hotspot
Thenearly universal benefit linked to thehotspot in science andpatenting
raises a question as to the factors related to authoring work in versus
out of the hotspot. Previous work has found a link between teamwork
in science and a paper’s citation impact (2, 22, 23). However, the mecha-
nisms behind the team effect and whether the same scientist performs
better working alone or in teams remain unknown (9, 12, 24–26). One
Fig. 3. Increasingdominanceof theknowledgehotspot forpredictinghitpapers in
science. Examining scientific papers over time shows thatpapers referencingwork in the
“low Dm and high Dq” distribution (that is, the knowledge hotspot) have consistently had
the highest impact during the past 55 years. The probability of being a hit paper is more
than twice the expected background rate, and the gap in citation impact between papers
in the hotspot and those outside the hotspot is growing over time. After 1960, only papers
that referenced work with certain age distributions, that is, belong to the hotspot, were
associatedwithhigh-impact research at a rate that exceeded the rate expected by chance.
Fig. 2. Distributions of the age of references. The plot shows the characteristic age distributions that correspond to the four quadrants shown in Fig. 1, taking the average
distribution for each category among all papers in theWOSpublished in 1995. The central tendency of the lowDm andhighDq, “the knowledgehotspot,”distribution includes very
recent workwith a long, slowly sloping tail into past knowledge. By contrast, the central tendency of the lowDm and lowDq distribution is recent work, the central tendency of the
high Dm and high Dq distribution is relatively old work, and the central tendency of the high Dm and high Dq distribution is to cite relatively evenly over past knowledge.
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conjecture is that collaboration potentially reduces knowledge search and
awareness problems that solo authors face (2, 27). We examined authors
and inventorswho createdworks on their own and in collaborationwith
others and tested whether the same author is more or less likely to write
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
papers that are in the hotspot when authoring alone versus coauthoring
with others. The data used in this analysis comes from two sources: all
Fields Medalists in mathematics and patentees. Fields Medalists offer a
conservative test of the collaboration conjecture. If collaboration helps
Fig. 4. Knowledge hotspot dominates high-impact science on a field-by-field basis. Disaggregating science into 171 separate science and engineering fields, 54 social
science fields, and 27 humanities fields, the histograms indicate the fraction of all fields, where the knowledge hotspot predicts hit papers. In 1990–2000, almost 90% of
the 252 fields showed the hotspot-hit link (P < 0.0001, two-tailed binomial test).
Table 1. Probability of being in the top 5% of citations for scientific papers. Logit regression estimates for three time periods indicate that the strong
negative predictive relationship between Dm and H and the strong positive relationship between Dq and H shown in Figs. 1 and 5 hold across time, fields, paper,
and reference characteristics. BIC model fit statistics “very strongly” indicate that models with Dm and Dq significantly and substantively fit the data better than
control variable models (see Materials and Methods) [(25), p. 139]. Variance inflation factor statistics are 1.25 or 1.21, depending on the decade, and indicate no
multicollinearity among the independent variables. ***P < 0.0001, **P < 0.001.
1980–1989
 1990–2000
 1950–2000
b (SE)
 b (SE)
 b (SE)
 b (SE)
 b (SE)
 b (SE)
Dm
 −0.195*** (0.0008)
 −0.185*** (0.001)
 −0.203*** (0.0006)
 −0.179*** (0.001)
 −0.157*** (0.0004)
 −0.179*** (0.0006)
Dq
 1.691*** (0.007)
 1.329*** (0.010)
 1.559*** (0.0056)
 1.410*** (0.007)
 1.776*** (0.004)
 1.367*** (0.10)
Reference-level controls
P (Interdisciplinarity)
 1.954*** (0.024)
 1.892*** (0.021)
 1.909*** (0.030)
A (Novelty)
 0.185*** (0.006)
 0.177*** (0.005)
 0.186*** (0.003)
C (Conventionality)
 0.239*** (0.002)
 0.255*** (0.002)
 0.229*** (0.001)
M (Reference quality)
 0.001*** (10−04)
 0.0006*** (10−04)
 0.001*** (6.5 × 10−06)
Paper fixed effects
N (#Authors)
 Y
 Y
 Y
Y (Year)
 Y
 Y
 Y
R (#References)
 Y
 Y
 Y
S (Subfield)
 Y
 Y
 Y
Obs.
 3,792,038
 3,627,624
 6,298,005
 6,099,788
 13,950,691
 13,387,366
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augment the search capabilities of individual scientists, then excep-
tional scientists may be least likely to receive a boost from collabora-
tion. Patentees provide a test of the collaboration conjecture for all
patentees in the U.S. patent database. (Note: We could not analyze
all WOS authors because WOS author names lack disambiguation.)
Using these data sets, we implement regressions that include fixed
effects for each individual author. This approach estimates a within-
subject design (rather than a between-subject design), treating each
author as her own control case and accounting flexibly for the author’s
fixed characteristics (for example, IQ, training, and personality). The
regression estimates the increase in the probability of a given author
producing a paper in the hotspot versus outside the hotspot as a
function of whether a given author worked alone or collaborated with
others. The regression additionally has fixed effects controls for field,
year, and number of references. (See Methods for the regression model
and variable construction details.)

Figure 7 graphically presents the results for Fields Medalists. More
than 80% of FieldsMedalists are significantlymore likely to have papers
in the hotspot when coauthoring than when writing a paper alone, a
relationship unlikely to happen by chance (P < 0.00009, binomial test).
Consistent with ourmain effects, FieldsMedalists’ papers in the hotspot
are twice as likely to be their most cited papers on average, reinforcing
our general result. Examining patentees, we found a comparable in-
crease in the probability of being in the hotspot associated with
collaboration. Collaboration significantly (P < 0.0001) improves the like-
lihood of inventors writing patents that are in the hotspot (table S13).
DISCUSSION
Scientists and inventors prospect an ever-expanding knowledge space
in pursuit of new ideas and discoveries. More knowledge suggests more
creative material to draw upon, but scientists and inventors are limited
in their capacity to search through the knowledge space. This search
Fig. 5. Probability of a hit paper and combinations of Dm and Dq. Estimates are
from Table 1 for 1990–2000with 95% confidence intervals. Combinations ofDm andDq

above the dashed line have a probability greater than the 5% background rate
expected by chance.
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
Fig. 6. The dominance of the hotspot for predicting hit patents. (A) Knowledge hot-
spot predicts high-impact technology. Patents that are in the hotspot aremore than two
timesmore likely to be hits than the background rate of 5% (data shown are for the year
1995,N=103,700patents). Thesepapers cite priorwork that has a lowmeanage,Dm, and
a high age variance,Dq, relative to other papers in their field. Notably, 75%of patents are
outside the hotspot and display a probability of being a hit that is no greater than ex-
pected by chance. Solid lines and dotted lines are populationmeans andmedians of
Dm and Dq. (B) Increasing dominance of the knowledge hotspot in patenting. Exam-
iningpatents on a year-by-year basis shows that patents in thehotspot have consistently
had the highest probability of a hit during the past 50 years. (C) Knowledge hotspot
dominates high-impact patenting on a field-by-field basis. Across 95% patent subfields,
patents in the hotspot are more likely to be hits than those based on other ages of in-
formation. Between 1990 and 1999, patents in the top 5% of the citation distribution are
in the hotspot in more than 95% of subfields (P < 0.0001, two-tailed binomial test).
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trade-off puts a premium on knowing where to search in the literature
to discover the most valuable building blocks of new knowledge.

Some theories of knowledge emphasize the importance of using and
combining recent ideas in driving breakthroughs, whereas others pur-
port that past knowledge that has withstood the test of time is most val-
uable (10–12). Our findings show that each approach is only partly
correct. Drawing narrowly on recent ideas does not lead to exceptional
impact. Similarly, drawing on vintage knowledge orwidely sampledwork
is associated with an impact no greater than expected by chance.

We find a subtler yet nearly universal pattern that links the age of past
knowledge to high-impactwork.Ourwork indicates that a knowledge hot-
spot characterizes a distributionof the age of prior literature referenced by a
paper, relative to the paper’s publication year, that is associatedwith excep-
tionally high impact in science and technology. Papers and patents in the
hotspot reference literature with a lowmean age and high age variance rel-
ative to a work’s publication year.Works in the hotspot more than double
their probability of being in the top 5% of impact in their field.Works out-
side of the hotspot—work centered on recent papers, old papers, or a broad
sample of new and old works—do no better than expected by chance. The
hotspot’s significance is furtherhighlightedby the fact that thehighest-impact
works across scientific and patenting fields have a similar hotspot-hit rela-
tionship. Beyond science and technology, work in progress indicates that
the hotspot also reflects the relationship between past and future knowledge
in law. In other work, we found that Supreme Court rulings in the United
States, Canada, and India that are in the hotspot are overrepresented among
the most influential laws (28). Last, the hotspot is becoming increasingly
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
predictive of high-impactworkover time andnowappears innearly all sub-
fields of science and technology.

The hotspot’s generality indicates that there is an age distribution of
prior knowledge that is particularly linked to tomorrow’s breakthroughs.
Future research should begin to investigate what is unique about the
knowledge that follows this distribution. Consider two papers written
at the same time on the same topic but one paper is in the hotspot
and the other is not. What ideas does the former paper have that are
not found in the knowledge space searched by the later paper? One con-
jecture is that the nature of scientific and technological progress involves
newknowledge absorbing, replacing, or improvinguponprior knowledge.
However, these processes may often take time before critical tests can be
conducted, debates canbe settled, funds canbegarnered for addressing the
biggest problems and for a large community of scholars to form around
the problem. Thus, although a narrow focus on recent literaturemay offer
an opportunity to capitalize on the latest ideas, the research may turn out
to be a fad or dead end. At the same time, a narrow focus on vintagework
may fail to connect classic ideas with current problems or insights.

Why is it that 75%of the papers and patents are outside the hotspot?
We found that one determinant of being in the hotspot is related to
collaboration: Authors are more likely to produce work that is in the
hotspot when coauthoring than when working alone. Why teams are
associated with higher impact work is still an open question and may
be related to several explanations that still need to be tested, including a
division of labor, collective intelligence, benefits of specialization, posi-
tive competition among teammates, myopic search, and social support
(29). Our findings provide a new explanation for the correlation found
between team science and impact with a focus on the role teams play in
searching complex knowledge spaces. Amidst these new questions and
directions for future work, our findings reveal that the age of informa-
tion is a remarkably powerful and heretofore unknown predictor of
high-impact work in science and technology.
MATERIALS AND METHODS
Data sources used in the analyses
Scientific papers database.
We examined all 28,426,345 research articles indexed in the Thomson
ReutersWOSdatabase thatwere published from1945 to 2013. The sub-
field designation of science and engineering (171 subfields), social
sciences (54 subfields), and arts andhumanities (27 subfields)was defined
by theWOS and covers research publications in science and engineering
since 1945, social sciences since 1956, and arts andhumanities since 1975.
Thesedata are described in the SupplementaryMaterials and are available
from Thomson Reuters.
Patents database.
We studied all 5,382,833 patents granted by the USPTO between 1950
and 2010. The data are described in detail in the Supplementary Materials
and are available from https://iu.app.box.com/patents/1/779886700/
7307669062/1, https://iu.app.box.com/patents/1/779886700/
15411270285/1, and https://dataverse.harvard.edu/dataverse/patent. See
the Supplementary Materials for further details.
Fields Medalist database.
We collected the data on all 31 mathematicians who won the Fields
Medal between 1954 and 2006. This time period allowed us to have at
least 8 years of forward and backward citation data for the Fields Medal-
ists’ papers. Data are located at http://ams.org/mathscinet/search/author.
html?mrauthid=%s&Submit=Search. See the Supplementary Materials
for further details.
Fig. 7. Collaboration predicts the increased probability of referencing knowledge
in the hotspot. Each entry on the x axis indicates a different FieldsMedalist inmathemat-
ics in chronological orderof receiving theprize. Values above zeroon the yaxis indicate the
difference in the probability of being in the hotspot when a FieldsMedalist coauthors ver-
sus authors alone. For 26 of 31 FieldsMedalists, coauthorship is positively and significantly
associated with the authors’ chances of being in the hotspot (P < 0.0009, binomial test).
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Measures
High-impact scientific papers and patents (“hits”).
We measured a work’s H for our main results based on the number of
times it was cited in the first 8 years of publication in its respective sub-
field of science (6, 18, 21, 22, 30). A work with high impact was defined
as being in the top 5% of cited works in its specific subfield (that is, 1 of
252 subfields) and year of publication. To test the robustness of our
measures, we described many alternative measures and tests of H in
the Supplementary Materials, all of which produced results that are in
agreement with the ones reported in themain text. The alternativemea-
sures were hits defined as being in the top 1, 10, and 25% of the citation
distribution, the log of the number of citations a paper accumulates after
8 years of publication and over its lifetime, and a paper’s PageRank of
citations, that is, paperswith a lownumber of absolute citations butwith
relatively many cites by hit papers (18) and “sleeping beauty” papers
(papers that receive the bulk of their citation long after the year of their
publication) (17). All tests of alternative measures produced confirma-
tory results.
Age of referenced knowledge.
For each paper and patent, we measured (i) the average age of refer-
ences, Dm, and (ii) the COV of the age of references, Dq. Specifically,
Dm is the mean duration in years between a work’s publication year
and the publication years of the documents it references (6). For exam-
ple, in fig. S2A,we considered a paper published in 1995 and referencing
prior works published in 1990, 1988, 1987, and 1985; this paper has aDm

of 7.5 (themean of 5, 7, 8, and 10 years between the publication year and
reference years). A work with relatively small Dm references relatively
recent work. In the preceding example, Dq is 0.308 (SD of 2.16 years
normalized by the mean of 7.5 years). A work with a lowDq references
knowledge that is relatively narrowly dispersed around its mean value.
Note that a paper’s age distribution of references can have a lowDm and
high Dq whenever the focal paper and most of its references are pub-
lished close in time, but a few references are published many years
before the focal paper.When the focal paper and its references are pub-
lished close in time, the paper has a low mean age (31). When a paper
has a low mean age but a small share of its references were published
years before the focal paper, the SD and the COV become large,
producing papers that have a low mean age and a high age variance,
as shown in Fig. 1. About four percent of all papers had a zero difference
between their publication year and reference years and were omitted
from the analysis. (Please see the Supplementary Materials for a case
example, numerical simulations that generalize the case examples,
and further details.) For papers published between 1950 and 2000, the
mean and SD of Dq and Dm are 0.731 and 0.239, and 8.482 and 4.293,
respectively. For patents published between 1980 and 2000, themean and
SD of Dq andDm are 0.549 and 0.287, and 12.323 and 8.563, respectively.
To test the robustness of measuresDq,Dm, andH, we showed the results
for alternative measures of the age of information in the Supplementary
Materials, all of which are in agreement with the results reported in the
main text (tables S1 and S3 to S9).

Methods
Fixed-effects regressions: Predicting citation impact.
For predicting citation impact, the regression for scientific papers takes
the form

PrðHiÞ ¼ f ðDim; Diq; pi; mi; ci; ai;∑
r
brRri;∑

n
bnNni;∑

f
bf Sfi; ∑

y
byYyiÞ
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
and the regression for patents takes the form

PrðHiÞ ¼ f ðDim; Diq; pi; mi; ∑
r
brRri;∑

n
bnNni;∑

f
bf Sfi; ∑

y
byYyiÞ

To isolate the effects of our main variables from other predictors of
H (6, 15, 19, 25, 32–34), we ran logistic regression models, where we
regressed H on our main explanatory variables Dm and Dq. Control
variables include those specific to a paper or patent (work i) and fixed
effects that are specific to categories in the data. The set of control varia-
bles varies slightly between papers and patents given data availability, as
defined below.

Dependent variable: Citation impact,H (H = 1 if a paper or patent is
in the top 5% percentile of citations as defined above; 0 otherwise)

Predictor variables: Dm and Dq.
Control variables used in the regression analyses.
pi measures the degree to which work i references prior work from
multiple/interdisciplinary fields. To operationalize this variable, we as-
signed each pair of references in work i’s bibliography a value of 1 if the
pairs are from the same discipline (as defined by the WOS or USPTO)
and 0 otherwise.We then took the average across all reference pairs in a
bibliography to compute work i’s interdisciplinarity, which varies from
0 to 1. Global means (SDs) are 0.652 (0.208) for papers and 0.655
(0.339) for patents.

ai measures the degree to which a paper i references prior work that
represents novel pairings of prior ideas and is operationalized using the
measures described by Evans (6). Global means (SDs) are 0.331 (0.470)
for papers and not available for patents.

ci measures the degree to which a paper i references prior work that
represents conventional pairings of prior ideas and is operationalized
using the measures described by Evans (6). Global means (SD) are
4.237 (1.598) for papers and not available for patents.

mi measures the degree to which work i references highly cited
papers (2). To control for possible differences in the quality of refer-
enced information, we computed the mean number of citations accu-
mulated by all the references in work i’s bibliography. For example, if
work i references a total of three papers that have accumulated 10, 5,
and 30 citations, then mi is equal to 15 (45 citations/3 references).
Global means (SDs) are 70.561 (144.586) for papers and 8.759
(11.220) for patents.
Fixed-effects controls.
N controls for the number of authors on work i (18, 28). We included
indicator variables for one, two, and three or more authors. In the re-
gressions, the omitted indicator variable was for solo authorship.

Y controls for time fixed effects, that is, features of the data that are
constant within a year but vary across years such as number of papers
published, cohort, annual amount of funding awarded, number of
scientists or patentees, and so on. We created an indicator variable
for each year, where 2000 was the omitted year for the regressionmodel
for papers (1950–2000) and patents (1980–2000).

R controls for the total number of references inwork i’s bibliography.
We created 10 indicator variables (1 = yes; 0 otherwise) for 10 different
categories of reference counts. Category 1 has a range of references from
0 to 10, category 2 has a range of references from 11 to 20, etc., with the
final category representing 90 references or above. Using 10 equally
sized percentile groupings produced the same results. In the regressions,
the omitted indicator variable was for category 1. Global means (SDs)
are 23.814 (18.439) for papers and 8.656 (10.442) for patents.
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S controls for fixed differences across scientific or patenting fields,
which include differences between fields in the number of journals,
norms of production, topics, and so on. We created an indicator vari-
able for each of the 252 subfields of science and the 36 subfields of pa-
tenting. In the regressions, the omitted field indicators were AA
(subfield of “acoustics” as indexed in WOS) and 11 (subfield of “agri-
culture, food, and textiles” for patents).
Fixed-effects regressions: Predicting work in hotspot.
To predict work in the hotspot versus outside of the hotspot, we
used the following fixed-effects model

PrðhiÞ ¼ f ðani þ ∑
y
byYyi þ ∑

q
bqQqi þ ∑

r
brRri þ ∑

f
bf SfiÞ

Dependent variable: hi (hi ¼ 1 if a paper or patent is in hotspot;
0 otherwise)

Predictor variable: ni (ni = 1 if the paper/patent is solo-authored;
0 otherwise)
Control variables used in the regression analyses.
Q controls for name (in FieldsMedalists) or name ID (in patents) fixed
effects. We created an indicator variable for every Fields Medalist and
patent inventor. This approachmeans that the regression tells us whether
a given individual tends to producework in the hotspotwhen that person
collaborates with others compared to instances where that same individ-
ualworks alone.Other control variables in this regression (Y,R, and S) are
defined above.
BIC goodness-of-fit statistics for the regression analyses.
BIC statistics were used to interpret the improvement in fit of the re-
gression model when Dm and Dq were added to the control variable
model (25). In all models, the drop in the BIC statistics greatly ex-
ceeded 10, indicating that there is “strong evidence” that Dm and Dq

provide a significantly and substantively better fit to the data than does
the control variable model [(25), p. 139]. Specifically, the values of BIC
goodness-of-fit statistics for analyses with and Dm and Dq are as
follows:
Mukherjee et al., Sci. Adv. 2017;3 : e1601315 19 April 2017
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